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The second-order energy corrections are calculated for some normal saturated
hydrocarbons by using the many body-perturbation theory (MBPT) based on
localized orbitals. The correlation energies are expressed as the sum of
contributions from virtual orbital pairs. We have found that these contributions
are transferable and have interesting structural features: the trans-coplanar
effects are relatively large. Partitioning the correlation energies according to
the “order of neighbourhood” we have found that the zero order effects are
the largest but the first and second neighbour contributions are also important.
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1. Introduction

One of the more systematic approaches that goes beyond the independent particle
scheme is based on the diagrammatic many-body perturbation theory (MBPT)
[1-6]. In the so-called algebraic approximation this approach has been used to
evaluate the energy for atoms and small molecules through the fourth order
[7-13]. As the evaluation of the energy through the nth order is an M*" 2
procedure [14] (M : the number of basis functions), the extension to larger systems
is not feasible at present. In the past decade considerable interest has been
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devoted to the theoretical study of spatially extended electronic systems (e.g.
large molecules, polymers, clusters and solids) where treatment with conventional
methods on the ab initio level is out of the question, in the absence of translational
symmetry. Previously, it was supposed that, for the correlation energy, local and
non-local contributions could be distinguished with only the local contribution
being important [15]. One of the present authors (EK) developed a perturbational
approach where the zero order wavefunction is the APSG ground state [16]. The
PCILO method [17] was also based on localized orbitals, which, however, are
not solutions of the Hartree-Fock (HF) equations. Amos and Musher [18] and
Davidson [19] have shown how the zero order Hamiltonian and the wavefunction
can be chosen when the orbitals used are unitary transforms of the canonical
HF orbitals. Localized orbitals have also been applied in theories involving partial
summations (CPMET [20, 21], CEPA [22, 23] and other methods [24, 25]). One
of the authors (EK) has proposed a method which is based on the localized HF
orbitals and has shown how the local and non-local contribution of the correlation
energy can be separated and the computational work decreased [26]. The method
has been applied to cyclic polyenes (with PPP model Hamiltonian). The correla-
tion energy through the fourth order (including some fifth-order terms) has been
calculated and the results compared with those obtained by other methods (full
CI, etc.) [27-29]. Taking the structure of the molecules into consideration, the
localized orbitals and the correlation energy contributions have been partitioned
according to the “order of neighbourhood”. It has been shown that contributions
from distant neighbours can be neglected. Similar methods have been used by
others [30,31]. The integrals over localized orbitals have been calculated (or
estimated) and those not exceeding a certain threshold have been neglected. Our
procedure needs less computational work because we determine the smallness
of the contributions by considering the topological and geometrical structures of
the molecule and not the values of the integrals. This means that integrals over
localized orbitals which will be omitted will not be generated by integral transfor-
mation - the bottle-neck of the MBPT.

The aim of the present paper was to investigate the power of the method by
applying it on the ab initio level to normal saturated hydrocarbons.

2. Theory

The exact (non-relativistic) Hamiltonian is partitioned as follows
H=H9+W. (1)
The occupied single-particle functions ¢;, i=1,2,..., N, and the virtual single-

particle functions ¢,, a= N+1, N+2,..., M, are solutions of the canonical HF
equations:

ﬁwk=€kwka' k=132""sM (2)

where

F=AM+ T Gird =Pl 3)
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When H'9 is chosen as

N
H?=y F(i) (4)
i=1
the perturbation is as follows
2 NI 1 N 1 A
W=1/2 ¥ ry = ¥ (lra A= Polj) (5)
ij=1 ij=1

Localizing the occupied and the virtual single-particle functions separately by
unitary transformations,

N
$i= .Zl Uzj%, (6)
j=
M
Pa = Z Vablpb: (7)
b=N+1

the localized orbitals satisfy the following non-diagonal HF equations

N

Fo;= Y &g, 5j=1,2,..., N, (8)
j=1

A j M

Fo,= Y ewps, ab=N+1,N+2,....M (9)
b=N+1

According to Amos and Musher [18] we can choose a new HF operator
Foe=F= X |peytjl= 3 la)ea(b, (10)
i*j a#b
the eigenfunctions of which are the transformed single-particle functions
F¢,=ep, i=1,2,...,N, (11)
F°0,=¢e,0,, a=N+1,N+2,..., M. (12)
In this case the zero order Hamiltonian and the perturbation is chosen as follows:

N

If[loc(O): Z ﬁloc:(i)’ (13)
i=1 .
” ” N N M
e we S et § jareatsl] (14
i=1 L r=1 ab=N=+1
k=l a#b

Due to the off-diagonal Fock matrix elements, the perturbation (14) has extra
terms, compared with (5).

In the diagrammatic formulation the terms of the perturbation series are repre-
sented by graphs. Through fourth order all diagrams of the canonical representa-
tion have been reported [32]. The extra terms due to the off-diagonal Fock matrix
elements are given in [27-29]. These terms enter the perturbation correction in
third and higher orders.
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Introducing orbitals instead of the single-particle functions (spin-orbitals) we
obtain the second-order correction

EO-Yy (ij| ab)(2(ij| ab) = (ij| ba))

ij ab £i+£j_£a_£b

(15)

The individual pair corrections can be partitioned as the sum of contributions
of given virtual orbital pairs ab

Eij = Z eij(ab)a
ab (16)
(ij| ab)(2(ij | ab) —(ij | ba))

gtei—e,—¢g

e;(ab) =

Since the normal alkanes in the ground state are linear chain molecules, the
partitioning of the localized orbitals in the valence shell according to the “order
of neighbourhood” is relatively simple. At the end of the chain a C,H localized
orbital has three first neighbours (2 C;H and C,C,), three second neighbours (2
C,H and C,C,). In the middle of the chain a CH localized orbital has three first
neighbours but six second and up to six third neighbours. All CC bonds have
six first neighbours. The partitioning of the virtual orbitals depends upon the
basis [33]. By using bases with equal numbers of s and p sets, each virtual orbital
can be assigned to one of the occupied orbitals. Adding polarization functions
to sp bases we obtain virtual orbitals which can be assigned to more than one
of the occupied orbitals.

In this paper we are using a standard STO-3G basis. Each occupied orbital in
" the valence shell has one virtual orbital which is localized in the same spatial
region. For the partitioning of the integrals (ij | ab) we used the simplest procedure:
if a is the uth neighbour of i and b is the vth neighbour of j and w = v then we
consider the contribution of the integral as the uth neighbour effect. In this case
we have for every ij pair only one zero neighbour contribution when a is the
zero neighbour of i and, simultaneously, when b is the zero neighbour of j. Other
partitions are also possible. The contributions of the same order are added for
the individual pair correlations and for the total correlation energy. The partition
of higher order corrections can be carried out in a similar fashion. Systematically
omitting “‘higher neighbourhood” effects, the MBPT using the localized rep-
resentation becomes an M" procedure (instead of M>"7?).

3. Calculations

The canonical HF equations have been solved for C,,.Hy,iw (n=0,1,2,3,4)
applying the program system SYCETY, thus efficiently utilizing the C,, symmetry
of the systems [34-36]. A standard STO-3G basis set has been used with a model
geometry Rcp=1.094 A, Roc=1.526 A and tetrahedral valence angles. The
occupied and virtual orbitals have been localized in a separate manner by using
the procedure of Boys [37]. Both the occupied and the virtual orbitals are well
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Table 1. The second-order correlation energy calculated
in the canonical and in the localized representation (in
a.u.) with the STO-3G basis

EQ, E{%
CH, —0.05710777 —0.05601692
C;H; —0.15907730 —0.15454196
CsH,, ~0.26211500 —0.25378924

localized and the localized contributions of certain properties (Fock matrix
elements, charge distributions etc.) are transferable to a very good approximation
[38]. After suitable integral transformations the second-order corrections have
been calculated in the localized representation and in the canonical representation
and displayved in Table 1. The results of the two representations are very similar,
which can be attributed to the localizability of the systems and of the basis sets.
This suggests that the higher-order localization corrections are small.

4. Transferability and structural features of the correlation energy contributions

The virtual orbital pair contributions (16) for certain correlating pairs are shown
in Tables 2 and 3. The contributions of the electron pair on the localized orbital
CH lying in the mirror plain of the molecules are displayed in Table 2. Since
there is one occupied and one virtual localized orbital for each bond, they can
be uniquely characterized by the symbols of the corresponding bond. The carbon
atoms are denoted consecutively, beginning at one end of the chain: C,, C,, C;,
C,, Cs. The H atoms lying in the mirror plane of the molecule are denoted as
H and H' and those lying below and above the mirror plane are denoted as H|
and Hpy, respectively. For the sake of simplicity, only the contributions of the
doubly-occupied virtual orbitals (a=b) are displayed. Comparing the results
obtained for the molecules investigated, we can see that the orbital pair contribu-
tions are transferable to a very good approximation. It is also remarkable that
the contributions of the virtual orbitals of the CC bonds are larger than those of
the CH bonds lying outside the mirror plane of the molecules. The difference is
particularly large in the “second neighbourhood” where the C,C; bond is trans-
coplanar to C,H.

In Table 3 we show the contributions to the correlations of the orbital pair:
i=C,H, j=C,H;. One virtual orbital (a) is fixed at the position C;H while the
position of the other (b) is altered. The contributions are again transferable to
a very good approximation. It should be noted that the contribution of the virtual
orbital at the position C,Hi which is trans-coplanar to C,H, is very important.
It was found in the independent particle approximation, on semi-empirical [39]
and ab initio [40] levels, that the vicinal coplanar tails of the localized orbitals
are appreciable. The large contribution to the correlation energy can be explained
in a similar way.
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Table 4. The total pair correlation energy, Ey;, for i =j=C,H (in a.u.) and the partitioning according
to the “neighbourhood order” (in %)

E; Zero st 2nd 3rd 4th 5th

Y

CH,  —0.10838—1  9432%  5.68% 0.00% 0.00% 0.00% 0.00%
C.Hy, —0.10836—-1  9413%  5.74% 0.12% 0.01% 0.00% 0.00%
CH,, —0.10834—-1 9414%  573% 0.12% 0.01% — -

Table 5. The total pair correlation energy, E;;, for i=CH, j=CH; (in a.u.) and the partitioning
according to the “neighbourhood order” (in %)

Zero 1st 2nd 3rd 4th 5th
CH, —0.20326 -2 114.42% —14.42% 0.00% 0.00% 0.00% 0.00%
C;Hg —0.21412-2 110.82% —14.23% 3.05% 0.34% 0.00% 0.00%
CsH,, —0.21397-2 110.88% —14.27% 3.01% 0.37% 0.01% —

Table 6. The total second-order correlation energy for the localized representation (in a.u.) and the
partitioning according to the “peighbourhood order” (in %)

Zero 1st 2nd 3rd 4th 5th

CH,  —056017—-1  97.89%  2.21% 0.00% 0.00% 0.00% 0.00%
CHg  —154542-1  9417%  3.46% 2.29% 0.08% 0.00% 0.00%
CH,, -—253789—1  93.03%  3.84% 2.95% 017%  — —

5. Partitioning of the pair correlations according to
the ““order of neighbourhood”

Our procedure used was described in Sect. 2. In Tables 4 and 5 we show the
partitioning for the pairs i =j=C;H and i=C,H, j=C,;H,, respectively. In the
first case (intrapair correlation) more than 94% is contributed by the ““zero order
neighbourhood” and the effects of third and higher “order” can be neglected.
In the second case (interpair correlation) the deviation is larger: the zero “order”
terms overestimate the correlation energy by more than 10% but the first “order”
contributions correct the error almost completely. Finally in Table 6 we display
the partitioning of the total correlation energies. As can be seen, the “zero order”
terms give more than 93% of the correlation energy and including the first and
second neighbour effects we obtain more than 99%. The importance of the
“second neighbour” contributions should be emphasized. They can be explained
by the relatively large trans-coplanar effects mentioned in Sect. 4.

6. Conclusions

The method proposed by us to partition the correlation energy corrections
according to the topological and geometrical structures of the molecules is
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Table 7. The second-order correlation energy of CH, (in
a.u.) for the canonical and for the localized representations
with different basis sets

Basis set E&®) E®

STO-3G —0.05710777 —0.05601692
6-31G —0.09931265 —0.09209949
6-31G* —0.14120751 —0.11332266

apparently a useful one. It should be noted, however, that due to the STO-3G
basis, the localizability of the wavefunction is exaggerated and the correlation
energies calculated are less than a third of the “experimental”. Nevertheless the
terms occurring in this approximation represent the leading terms, in the sense
that they give the largest contributions when using systematically extended basis
sets. This can be demonstrated on the CH intrapair correlation of CH,: for
STO-3G we obtain —0.010838 a.u., with 6-31G we obtain —0.013921 a.u., and
adding six d functions to the former basis we obtain —0.015283 a.u. By using
larger basis sets the importance of localization corrections increases. This can be
illustrated by the results obtained for CH, with different basis sets (Table 7).
Applying the 6-31G basis we obtain three virtual orbitals for each occupied orbital
in the valence shell. Adding six d orbitals to the 6-31G basis we obtain six new
virtual orbitals, four of which can be uniquely assigned to the four occupied
orbitals of the valence shell. The remaining two virtual orbitals cannot be assigned
to any one bond but belong to all occupied orbitals of the same centre, forming
a separate group. The partitioning of the correlation energy corrections can be
carried out in this way for all standard basis sets. Calculations on larger systems
are in progress.
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