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The second-order energy corrections are calculated for some normal saturated 
hydrocarbons by using the many body-perturbation theory (MBPT) based on 
localized orbitals. The correlation energies are expressed as the sum of 
contributions from virtual orbital pairs. We have found that these contributions 
are transferable and have interesting structural features: the trans-coplanar 
effects are relatively large. Partitioning the correlation energies according to 
the "order  of neighbourhood" we have found that the zero order effects are 
the largest but the first and second neighbour contributions are also important. 
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1. Introduction 

One of the more systematic approaches that goes beyond the independent particle 
scheme is based  on the diagrammatic many-body perturbation theory (MBPT) 
[1-6]. In the so-called algebraic approximation this approach has been used to 
evaluate the energy for atoms and small molecules through the fourth order 
[7-13]. As the evaluation of the energy through the nth order is an M 2n 2 
procedure [14] (M: the number  of basis functions), the extension to larger systems 
is not feasible at present. In the past decade considerable interest has been 
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devoted to the theoretical study of spatially extended electronic systems (e.g. 
large molecules, polymers, clusters and solids) where treatment with conventional 
methods on the ab initio level is out of the question, in the absence of  translational 
symmetry. Previously, it was supposed that, for the correlation energy, local and 
non-local contributions could be distinguished with only the local contribution 
being important [15]. One of  the present authors (EK) developed a perturbational 
approach where the zero order wavefunction is the APSG ground state [16]. The 
PCILO method [17] was also based on localized orbitals, which, however, are 
not solutions of the Hart ree-Fock (HF) equations. Amos and Musher [18] and 
Davidson [19] have shown how the zero order Hamilt0nian and the wavefunction 
can be chosen when the orbitals used are unitary transforms of the canonical 
HF orbitals. Localized orbitals have also been applied in theories involving partial 
summations (CPMET [20, 21], CEPA [22, 23] and other methods [24, 25]). One 
of the authors (EK) has propOsed a method which is based on the localized HF 
orbitals and has shown how the local and non-local contribution of the correlation 
energy can be separated and the computational work decreased [26]. The method 
has been applied to cyclic polyenes (with PPP model Hamiltonian). The correla- 
tion energy through the fourth order (including some fifth-order terms) has been 
calculated and the results compared with those obtained by other methods (full 
CI, etc.) [27-29]. Taking the structure of the molecules into consideration, the 
localized orbitals and the correlation energy contributions have been partitioned 
according to the "order  of neighbourhood".  It has been shown that contributions 
from distant neighbours can be neglected. Similar methods have been used by 
others [30, 31]. The integrals over localized orbitals have been calculated (or 
estimated) and those not exceeding a certain threshold have been neglected. Our 
procedure needs less computational work because we determine the smallness 
of  the contributions by considering the topological and geometrical structures of 
the molecule and not the values of the integrals. This means that integrals over 
localized orbitals which will be omitted will not be generated by integral transfor- 
mation - the bottle-neck of the MBPT. 

The aim of the present paper was to investigate the power of the method by 
applying it on the ab initio level to normal saturated hydrocarbons. 

2. Theory 

The exact (non-relativistic) Hamiltonian is partitioned as follows 

/~r =/~r(O) + ~ .  (1) 

The occupied single-particle functions ~i, i = l, 2 , . . . ,  N, and the virtual single- 
particle functions ~a, a = N +  1, N + 2 ,  . . . ,  M, are solutions of the canonical HF 
equations: 

16~Ok = ektkk, k = 1, 2 , . . . ,  M, (2) 

where 
N 

/3 =/-1(1) + Y. (jlr~-~(1 - I t 3 1 2 ) l j )  1 . (3) 
j = l  
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When ~(o) is chosen as 

N 

/~(o)= y, /~(i) (4) 
i = l  

the perturbation is as follows 

N N 

W = l / 2  ~' r ~ ' -  2 (J l r~ l (1-~2)[J) i  �9 (5) 
i , j= l  i , j= l  

Localizing the occupied and the virtual single-particle functions separately by 
unitary transformations, 

N 

~Pi = Y~ U~j~Oj, (6) 
j = l  

pc/ 

~P,= • Vab~Pb, (7) 
b = N + l  

the localized orbitals satisfy the following non-diagonal HF equations 

N 

F~pi = • so,j,  i , j  = 1, 2 , . . . ,  IV, (8) 
j - - 1  

M 

/3q~a= • eab~b,  a , b = N + I , N + Z , . . . , M .  (9) 
b - - N + l  

According to Amos and Musher [18] we can choose a new HF operator 

/3,o~:/3_ Z [i)eo(J[-- ~, [a)eab(b[, (10) 
i,j a,b 

i ~ j  a * b  

the eigenfunctions of which are the transformed single-particle functions 

~ l o c  i ~-- ei~i, i = 1, 2 , . . . ,  N, (11) 

/3Joo~p~ = ea~p~, a = N +  1, N + 2 , . . . ,  M. (12) 

In this case the zero order Hamiltonian and the perturbation is chosen as follows: 

N 
/_),oo(o)= • /31oo(i), (13) 

i = 1  

ff.,oo__ ft.+ Ik)ek,(ll+ Y la)eab(bl �9 (14) 
i = 1  I . k , l= l  a , b = N + l  

k # l  a C b  

Due to the off-diagonal Fock matrix elements, the perturbation (14) has extra 
terms; compared with (5). 

In the diagrammatic formulation the terms of the perturbation series are repre- 
sented by graphs. Through fourth order all diagrams of the canonical representa- 
tion have been reported [32]. The extra terms due to the off-diagonal Fock matrix 
elements are given in [27-29]. These terms enter the perturbation correction in 
third and higher orders. 
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Introducing orbitals instead of the single-particle functions (spin-orbitals) we 
obtain the second-order correction 

E(2) = Z E (ij[ab)(2(Ulab)- (ijlba)) (15) 
ij a b  E i " ~  E j  - -  E a - -  E b 

The individual pair corrections can be partitioned as the sum of contributions 
of given virtual orbital pairs ab 

Eij= Y~ ev( ab ), 
a b  

e~( ab ) = 
(Olab)(2(ij[ab) - ( / j  I ba)) 

6i q- ~j -- ea -- eb 

(16) 

Since the normal alkanes in the ground state are linear chain molecules, the 
partitioning of the localized orbitals in the valence shell according to the "order  
of neighbourhood" is relatively simple. At the end of the chain a C1H localized 
orbital has three first neighbours (2 C1H and CaC:), three second neighbours (2 
C2H and C2C3). In the middle of the chain a CH localized orbital has three first 
neighbours but six second and up to six third neighbours. All CC bonds have 
six first neighbours. The partitioning of the virtual orbitals depends upon the 
basis [33]. By using bases with equal numbers of s and p sets, each virtual orbital 
can be assigned to one of the occupied orbitals. Adding polarization functions 
to sp bases we obtain virtual orbitals which can be assigned to more than one 
of the occupied orbitals. 

In this paper we are using a standard STO-3G basis. Each occupied orbital in 
the valence shell has one virtual orbital which is localized in the same spatial 
region. For the partitioning of the integrals (/jl ab) we used the simplest procedure: 
if a is the /z th  neighbour of i and b is the ~,th neighbour o f j  and ~ -> ~, then we 
consider the contribution of  the integral as the /z th  neighbour effect. In this case 
we have for every (/ pair only one zero neighbour contribution when a is the 
zero neighbour of i and, simultaneously, when b is the zero neighbour ofj .  Other 
partitions are also possible. The contributions of the same order are added for 
the individual pair correlations and for the total correlation energy. The partition 
of higher order corrections can be carried out in a similar fashion. Systematically 
omitting "higher neighbourhood" effects, the MBPT using the localized rep- 
resentation becomes an M ~ procedure (instead of M2"-2). 

3. Calculations 

The canonical HF equations have been solved for C 2 n + l H 4 n + 4  ( n  = 0 ,  1, 2, 3, 4) 
applying the program system SYCETY, thus efficiently utilizing the C2~ symmetry 
of the systems [34-36]. A standard STO-3G basis set has been used with a model 
geometry RcH= 1.094,~, Rcc = 1.526 A and tetrahedral valence angles. The 
occupied and virtual orbitals have been localized in a separate manner by using 
the procedure of Boys [37]. Both the occupied and the virtual orbitals are well 



Application of the many-body perturbation theory 

Table 1. The second-order correlation energy calculated 
in the canonical and in the localized representation (in 
a.u.) with the STO-3G basis 

C H  4 -0 .05710777  -0.05601692 
C3H 8 -0 .15907730  -0.15454196 
CsHl2  -0 .26211500  -0.25378924 

341 

localized and the localized contributions of  certain properties (Fock matrix 
elements, charge distributions etc.) are transferable to a very good approximation 
[38]. After suitable integral transformations the second-order corrections have 
been calculated in the localized representation and in the canonical representation 
and displayed in Table 1. The results of the two representations are very similar, 
which can be attributed to the localizability of  the systems and of the basis sets. 
This suggests that the higher-order localization corrections are small. 

4. Transferability and structural features of the correlation energy contributions 

The virtual orbital pair contributions (16) for certain correlating pairs are shown 
in Tables 2 and 3. The contributions of  the electron pair on the localized orbital 
CH lying in the mirror plain of the molecules are displayed in Table 2. Since 
there is one occupied and one virtual localized orbital for each bond, they can 
be uniquely characterized by the symbols of  the corresponding bond. The carbon 
atoms are denoted consecutively, beginning at one end of the chain: C1, C2, C3, 
C4, C5. The H atoms lying in the mirror plane of the molecule are denoted as 
H and H'  and those lying below and above the mirror plane are denoted as HL 
and HR, respectively. For the sake of simplicity, only the contributions of the 
doubly-occupied virtual orbitals (a = b) are displayed. Comparing the results 
obtained for the molecules investigated, we can see that the orbital pair contribu- 
tions are transferable to a very good approximation. It is also remarkable that 
the contributions of  the virtual orbitals of  the CC bonds are larger than those of 
the CH bonds lying outside the mirror plane of the molecules. The difference is 
particularly large in the "second neighbourhood" where the C2C3 bond is trans- 
coplanar to C1H. 

In Table 3 we show the contributions to the correlations of  the orbital pair: 
i = C1H, j = C1HL. One virtual orbital (a)  is fixed at the position C1H while the 
position of  the other (b) is altered. The contributions are again transferable to 
a very good approximation.  It should be noted that the contribution of the virtual 
orbital at the position C2HR which is trans-coplanar to C1H2 is very important. 
It was found in the independent particle approximation,  on semi-empirical [39] 
and ab initio [40] levels, that the vicinal c0Planar tails of  the localized orbitals 
are appreciable. The large contribution to the correlation energy can be explained 
in a similar way. 
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Table 4. The total pair correlation energy, Eq, for i = j  = C~H (in a.u.) and the partitioning according 
to the "neighbourhood order" (in %) 

E~j Zero 1 st 2nd 3rd 4th 5th 

CH4 -0.10838 - 1 94.32% 5.68% 0,00% 0.00% 0.00% 0.00% 
C3H 8 -0.10836 - 1 94.13% 5.74% 0.12% 0.01% 0.00% 0.00% 
C5H12 -0.10834-1 94.14% 5.73% 0.12% 0.01% - -  - -  

Table 5. The total pair correlation energy, Eli , for i = C~H, j = C~HL (in a.u.) and the partitioning 
according to the "neighbourhood order" (in %) 

Zero 1st 2nd 3rd 4th 5th 

CH 4 -0.20326-2 1 1 4 . 4 2 %  -14.42% 0.00% 0.00% 0.00% 0.00% 
C3H8 -0.21412-2 1 1 0 . 8 2 %  -14.23% 3.05% 0.34% 0.00% 0.00% 
C5H12 -0.21397-2 1 1 0 . 8 8 %  -14.27% 3.01% 0.37% 0.01% - -  

Table 6. The total second-order correlation energy for the localized representation (in a.u.) and the 
partitioning according to the "~eighbourhood order" (in %) 

Zero 1 st 2nd 3rd 4th 5th 

CH 4 -0.56017 - 1 97.89% 2.21% 0.00% 0.00% 0.00% 0.00% 
C3H8 -1.54542 - 1 94.17% 3.46% 2.29% 0.08% 0.00% 0.00% 
C5H12 -2.53789 - 1 93.03% 3.84% 2.95% 0.17% - -  - -  

5. Partitioning of the pair correlations according to 
the "order of neighbourhood" 

O u r  p r o c e d u r e  u s e d  was  d e s c r i b e d  in Sect.  2. I n  Tab le s  4 a n d  5 we  s h o w  the  

p a r t i t i o n i n g  fo r  t he  pa i rs  i = j  = C1H a n d  i = C I H ,  j = C1HL,  r e spec t ive ly .  In  the  

first case  ( i n t r apa i r  c o r r e l a t i o n )  m o r e  t h a n  94% is c o n t r i b u t e d  by  the  " z e r o  o r d e r  

n e i g h b o u r h o o d "  a n d  the  effects  o f  th i rd  a n d  h i g h e r  " o r d e r "  can  be  neg l ec t ed .  

I n  the  s e c o n d  case  ( i n t e rpa i r  co r r e l a t i on )  t he  d e v i a t i o n  is la rger :  the  z e r o  " o r d e r "  

t e rms  o v e r e s t i m a t e  t he  c o r r e l a t i o n  ene rgy  by  m o r e  t h a n  10% bu t  t he  first " o r d e r "  

c o n t r i b u t i o n s  co r r ec t  t he  e r ro r  a l m o s t  c o m p l e t e l y .  F i n a l l y  in  T a b l e  6 we  d i s p l a y  

the  p a r t i t i o n i n g  o f  t he  to t a l  c o r r e l a t i o n  energ ies .  As  c a n  be  seen,  t he  " z e r o  o r d e r "  

t e rms  g ive  m o r e  t h a n  93 % o f  t he  c o r r e l a t i o n  e n e r g y  a n d  i n c l u d i n g  the  first a n d  

s e c o n d  n e i g h b o u r  effects  we  o b t a i n  m o r e  t h a n  9 9 % .  T h e  i m p o r t a n c e  o f  the  

" s e c o n d  n e i g h b o u r "  c o n t r i b u t i o n s  s h o u l d  be  e m p h a s i z e d .  T h e y  can  be  e x p l a i n e d  

by  the  r e l a t ive ly  la rge  t r a n s - c o p l a n a r  effects  m e n t i o n e d  in Sect.  4. 

6. Conclusions 

T h e  m e t h o d  p r o p o s e d  by  us to p a r t i t i o n  the  c o r r e l a t i o n  e n e r g y  c o r r e c t i o n s  

a c c o r d i n g  to  the  t o p o l o g i c a l  a n d  g e o m e t r i c a l  s t ruc tu res  o f  t he  m o l e c u l e s  is 
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Table 7. The second-order correlation energy of CH 4 (in 
a.u.) for the canonical and for the localized representations 
with different basis sets 

R(2) ~(2) Basis set -can ~loc 

STO-3G -0.05710777 -0.05601692 
6-31G -0.09931265 -0.09209949 
6-31G* -0.14120751 -0.11332266 

E. Kapuy et al. 

apparently a useful one. It should be noted, however, that due to the STO-3G 
basis, the localizability of  the wavefunction is exaggerated and the correlation 
energies calculated are less than a third of  the "experimental" .  Nevertheless the 
terms occurring in this approximation represent the leading terms, in the sense 
that they give the largest contributions when using systematically extended basis 
sets. This can be demonstrated on the CH intrapair correlation of C H 4 :  for 
STO-3G we obtain -0.010838 a.u., with 6-31G we obtain -0.013921 a.u., and 
adding six d functions to the former basis we obtain -0.015283 a.u. By using 
larger basis sets the importance of localization corrections increases. This can be 
illustrated by the results obtained for C H 4  with different basis sets (Table 7). 
Applying the 6-31G basis we obtain three virtual orbitals for each occupied orbital 
in the valence shell. Adding six d orbitals to the 6-31G basis we obtain six new 
virtual orbitals, four of  which can be uniquely assigned to the four occupied 
orbitals of  the valence shell. The remaining two virtual orbitals cannot be assigned 
to any one bond but belong to all occupied orbitals of  the same centre, forming 
a separate group. The partitioning of the correlation energy corrections can be 
carried out in this way for all standard basis sets. Calculations on larger systems 
are in progress. 

Acknowledgements. The calculations have been carried out in the Kalm~ir Laboratory of Cybernetics, 
J6zsef Attila University, Szeged. The authors are indebted to the staff for help with the calculations. 
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